AK MiniLabor

3. Kategorie: Üben & Trainieren - quantitativ

Mol & Co

Als schülernahe Einführung in die abstrakte Thematik könnte der "MolComic" dienen

Beschreibung:

Das heikle Kapitel "Stoffmenge" ist ohne Übungsphasen im Unterricht nicht vermittelbar.

Die App Mol & Co hält viele Übungen zu den Begriffen "molare Masse" und "molares Volumen" bereit. Mit besonders leichten Aufgaben (Kopfrechnen) soll durch Erfolgserlebnisse die Freude gefördert werden.

Besonderheit: Zu jeder Aufgabe wird auch eine in rückwärtiger Richtung gestellt.

Während die Schüler von der App geleitet üben, kann der Lehrer bei Bedarf auf Fragen von einzelnen Schülern eingehen.

Bedienung

1. Aufgabentyp: Eingeben der molaren Masse zu einer gegebenen Formel

Empfohlene erste Einstellungen: (sind abgebildet)

Hinweis: Es sollen SATP-("Standard Ambient Temperature and Pressure") Bedingungen gelten, d.h. n(Gas) = 1 mol nimmt das Volumen V(Gas) = 24,2 L ein.

Dann auf: Start tippen

1. Aufgabentyp:

Eingeben der molaren Masse zu einer gegebenen Formel


Klick auf: "Hilfs-Mini-Periodensystem" auf (Bei Beginner: nur 6 Elemente).

Der Rechengang wird angedeutet.

2. Hilfe: Taschenrechner: Man braucht nur links **auf die jeweiligen Elemente** zu klicken, schon stehen deren molare Massen in der Anzeige.

1a eine Aufgabe rückwärts

Es passt nur eine der Formeln.

Hilfe mit: Spickzettel

2. Aufgabentyp: Masse aus der vorgegebenen Stoffmenge rechnen

2. Aufgabentyp:

Masse aus der vorgegebenen Stoffmenge rechnen

Mit Klick auf das kleine graue Dreieck erscheint das "Rechenhilfedreieck" vergrößert. Die Aufgabe kann im Kopf gelöst werden.

Gesuchtes wird mit Finger abgedeckt: hier: "m" = n*M. Mit Klick auf das kleine ,PSE' kann die molare Masse zur Multiplikation berechnet werden.

3. Aufgabentyp: Analog 2: Volumen aus der vorgegebenen Stoffmenge rechnen

Mit Klick auf und das kleine blaue Dreieck kommt wieder der Rechenweg und die Tabelle mit den Vielfachen von 24,2!

4. Aufgabentyp: Das Volumen aus der Masse über die Stoffmenge berechnen und umgekehrt.

4. Aufgabentyp: Nur im schwierigen Modus aufrufbar: Kombiaufgaben. Das Volumen aus der Masse über die Stoffmenge berechnen und umgekehrt.

Der Spickzettel ist entsprechend aufwendiger:
4! kleine Steuerbildschirme: z.B.:
1. Graues Dreieck: m/n*M und
2. Blaues Dreieck: V/n*V_M
3. das kleine einmal 24,2 und
4. molare Massen (PSE)

- 1. Rechenschritt (links): Berechnung der Stoffmenge aus 4 g : 2 g/mol (graues Dreieck) 2. Rechenschritt Berechnung des Volumens:
- 2 mol * 24,2 L/mol (blaues Dreieck)

Fragenumfang

Aufgabe 1: Gebe zu einer Formel die entsprechende molare Masse an bzw.
Finde zu einer gegebenen Molaren Masse von 3 vorgeschlagenen Formeln die richtige!

STOFF	TERM	HILFE	Molare Masse [g/mol]		
		Beginner			
Wasserstoff (als Gas)	H ₂	1.0*2=	2,0		
Helium	Не	4.0	4.0		
Stickstoff (als Gas)	N_2	14.0*2=	28,0		
Sauerstoff (als Gas)	O_2	16.0*2=	32,0		
Methan	CH ₄	12.0+1.0*4=	16,0		
Ammoniak	NH_3	14.0+1.0*3=	17,0		
Wasser	H_2O	1.0*2+16.0=	18.0		
Fluorwasserstoff	HF	1.0+19.0=	20,0		
Kohlenstoffdioxid	CO ₂	12.0+16,0+16,0	44,0		
		Nur Leichte			
Natriumchlorid	NaCl	23.0+35.5=	58.5		
Schwefelwasserstoff	H ₂ S	1.0*2+32.1=	34.1		
Chlorwasserstoff	HCI	1,0+35.5=	36.5		
Bromwasserstoff	HBr	1.0+79.9=	80.9		
Argon	Ar	39.9	39.9		
Kaliumiodid	KI	39.1+126.9=	166,0		
		Auch Schwere			
Butan	C ₄ H ₁₀	12.0*4+1.0*10=	58,0		
Aluminiumoxid	Al_2O_3	27.0*2+16.0*3=	102,0		
Schwefelsäure	H_2SO_4	1*2+32.0+16.0*4=	98.1		
Phosphorsäure	H_3PO_4	1.0*3+31.0+16.0*4=	98,0		
Kaliumnitrat	KNO ₃	39.1+14.0+16.0*3=	101.1		
Aluminiumfluorid	AIF ₃	27.0+19.0*3=	84,0		

Aufgaben 2-4: Umrechnungen von Stoffmenge, Masse, Volumen

STOFF	TERM	HILFE	Masse [g]	Stoff- menge [mol]	Volumen[L]		
31011	ILIXIVI	Begin	-0-	[IIIOI]	Volument		
Helium	He	He	4.0	1	24.2		
Kohlenstoffdioxid	CO ₂	C + O + O	22	0.5	12.1		
Fluorwasserstoff	HF	H+F	40	2	48,4		
Methan	CH ₄	C + H + H+ H +H	16	1	24.2		
Wasserstoff	H_2	H + H	4.0	2	48.4		
Stickstoff	N_2	N + N	14.0	0.5	12.1		
Stickstoff	N_2	N + N	56.0	2	48.4		
Wasserstoff	H_2	H + H	8.0	4	96.8		
Helium	He	He	2.0	0.5	12.1		
Helium	He	He	12	3	72.6		
Nur Leichte							
Helium	He	He	1	0.25	6.05		
Methan	CH ₄	C + H + H + H + H	16	1	24.2		
Wasserstoff	H_2	H + H	0.5	0.25	6.05		
Methan	CH ₄	C + H + H + H + H	80	5	121		
Argon	Ar	Ar	39.9	1	24.2		
Schwefeldioxid	SO_2	S + O + O	64.1	1	24.2		
Auch Schwere							
Schwefeldioxid	SO_2	S + O + O	128,2	2	48,4		
Argon	Ar	Ar	199.5	5	121		
Sauerstoff	O_2	0 + 0	8.0	0.25	6.05		
Wasserstoff	H_2	H + H	3.0	1.5	36.3		
Kohlenstoffdioxid	CO_2	C + O + O	5.5	0.125	3.025		
Kohlenstoffdioxid	CO_2	C + O + O	66	1.5	36.3		