Speichern			
Kupfer taucht in eine Silbernitratlösung:	Kupfer taucht in eine Zinksulfatlösung:	Zink taucht in eine blaue Kupfersulfatlösung	$Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$
cu	die Lösung färbt sich blau Kupfer löst sich auf Zn²-(sa) So² ZnSO₂-Lösung Gible Lösung färbt sich blau Kupfer löst sich auf es bildet sich Kupfersulfat Kupfer wird von Zink überzogen ZnSO₂-Lösung es findet keine Reaktion statt	Cuso-Lösung Kupferionen werden oxidiert Zink wird oxidiert Zink wird oxidiert Zink wird reduziert So/r Zink wird reduziert So/r Zink färbt sich blau es findet keine Reaktion statt	Daniell Element Zn wird reduziert Zn ist das Oxidationsmittel Cu wird reduziert Cu ²⁺ wird oxidiert Zn wird oxidiert
Was ist eine Halbzelle?	In einer Halbzelle läuft folgende Reaktion ab:	Eine Normalwasserstoffhalbzelle besteht aus:	In der Normalwasserstoffhalbzelle läuft folgende Reaktion ab:
Zwei Metalle berühren sich zwei Salzlösungen sind durch ein Diaphragma getrennt ein galvanisches Element ein Metall taucht in die Lösung seines eigenen Salzes ein Metall taucht in eine beliebige Salzlösung Eine galvanische Zelle besteht aus:	□ es entsteht ein Metallniederschlag □ Metall löst sich zum Ion, das Metallion scheidet sich als □ nur Oxidation □ die Metalllösung wird zum Metall □ keine Reaktion □ Das Potential einer Normalwasserstoffelektrode ist definiert mit	Platinblech in Salzsäure Platinblech in HCl(aq), c=1 mol/L Kupferelektrode in Zinksulfatlösung Platinblech umspült von H ₂ in HCl(aq), c=1 mol/L Platinblech umspült von H ₂ in NaOH(aq), c=1 mol/L Das Daniell-Element ist aufgebaut aus	$\begin{array}{c c} H_2 & & H_2(g) \leftrightarrows 2H^+(aq) + 2e^-\\ & H^+ 1e^- \to H \\ & 2H^+ + 2e^- \to H_2 \\ & 2HC1 \leftrightarrows H_2 + C12 \\ & H_2(g) \pm 2e^- \leftrightarrows 2H^+(aq) \end{array}$
einer Metallelektrode in seiner Metalllösung einer Metallelektrode in Imol/L HCl einem Nichtmetall in seiner Nichtmetalllösung Kombination zweier Halbzellen über ein Kabel Kombination zweier Halbzellen über eine Ionenbrücke	H₂ □ 1,0 V □ 0,0 V □ 10 V □ keine Definition □ 0,1 V	$ \begin{array}{c c} & \square \text{Cu}/\text{Cu}^2 $	+0.35V . bestimme die Potentialdifferenz! -0.41 V -0.40 V -1.11 V -1.11 V
Die Normalpotentiale: E°(Ag/Ag ⁺) = +0.80V und E°(Cu/Cu ²⁺) = +0.35V , bestimme die Potentialdifferenz! □ +0.45 V □ -0.45 V □ -1.15 V □ +0.5 V	Zwei Halbzellen haben verschiedene Konzentrationen: 1mol/L und 0,01 mol/L. Bestimme die Potentialdifferenz! 0,00059 V 0,0059 V 0,118 V 0,118 V 0,118 V	Ein galvanisches Element: H ₂ /2H ⁺ (E°=0V) // Cl ₂ /2 Cl ⁻ (E°=+1.36V). Welcher Stoff wird im Kurzschlussbetrieb Chloridionen es findet nur Reduktion statt Protonen Wasserstoff	Ein Galvanisches Element aus Fe^{3+}/Fe^{2+} (E° =+0,77V) // Zn/Zn^{2+} (E° =-0,76V), welcher Stoff wird im Kurzschlussbetrieb 1 Fe^{3+} Fe^{2+} $Fe(s)$ $Fe(s)$ Ta^{2+} T
Im Daniell-Element findet die Redoxreaktion $Zn + Cu^{2+} \leftrightarrows Zn^2 + Cu$ statt, welche Stoffe bilden das Halbelement Kathode?	Welche Aufgabe hat der Stromschlüssel (die Ionenbrücke) zwischen den Halbzellen? er leitet die Elektronen er tauscht die Lösung aus er leitet die Metalle er gleicht die Konzentrationen der nicht umgesetzten Ionen er führt Wasser nach	Was steht in der Spannungsreihe?	Was versteht man unter Potentialdifferenz? □ die Differenz zwischen zwei Spannungen □ die unterschiedliche Ladung □ der Elektronegativitätsunterschied zwischen zwei □ die Differenz unterschiedlich geladenen Ionen □ die Differenz zwischen zwei Potentialen
Wie unterscheiden sich die Potentiale zweier Normalwasserstoffhalbzellen mit einer pH-Differenz von 1 1,0 V			_
Fragen Datei: EC02 Elektrochemie - 21 Fragen			