

Herstellung

Fluor durch Elektrolyse von HF.

Chlor mit dem Diphragma-, bzw. Membran-Verfahren. Hier wird NaCl in Wasser elektrolysiert. Es entstehen Wasserstoff und Chlor.

Brom: Lösungen, die Bromidionen enthalten, werden mit Chlorgas versetzt. Das Chlor wird reduziert und das entstehende Brom kann mit einem Luftstrom ausgetrieben werden.

Spezielle Eigenschaften:

Hohe Reaktivität von Fluor

Fluor reagiert sogar mit Edelgasen. Ni, Cu, Stahl und eine Monel-Legierung (Cu-Ni) werden nur oberflächlich angegriffen, so dass Fluor in Flaschen, die aus solchen Legierungen bestehen, aufbewahrt werden kann. Fluorwasserstoff oder Fluor mit Wasser greifen Glas an.

Verbindungen mit Wasserstoff

Jede Halogenwasserstoffverbindung kann durch direkten Kontakt von Wasserstoff mit dem entsprechenden Halogen dargestellt werden.

Die stark exotherme Reaktion mit Chlor muss fotochemisch oder durch Erwärmen gestartet werden. Gemische von Chlorgas und Wasserstoff sind explosiv (Chlorknallgas). Brom reagiert weniger heftig und im Fall von lod läuft die Reaktion nicht vollständig ab.

Die Halogenwasserstoffe sind bei Raumtemperatur farblose Gase. Die Siedetemperaturen von HCI (-85°C), HBr (-67°C) und HI (-35°C) liegen erheblich niedriger als die von HF (+19,5°C). Ursache für die Siedetemperatur von HF sind die relativ starken Wasserstoffbrücken im flüssigen HF. Alle Halogenwasserstoffe sind sehr gut wasserlöslich. Die Lösungen heißen: Flusssäure, Salzsäure, Bromwasserstoffsäure und lodwasserstoffsäure.

Auch beim Einatmen von Halogenwasserstoffen werden die Schleimhäute angegriffen. Ebenso wirken ihre wässrigen Lösungen ätzend auf Zellgewebe. Insbesondere Flusssäure verursacht schmerzhafte und schlecht heilende Verletzungen auf der Haut.

Flusssäure und Fluorwasserstoff (HF) haben die bemerkenswerte Eigenschaft, Quarz (SiO₂) und Glas, das aus Quarz hergestellt wird, anzugreifen (zu lösen). Die Reaktion dient zum Ätzen von Glas. Flusssäure kann deshalb nicht in Glasflaschen aufbewahrt werden. (Man verwendet zur Aufbewahrung Kunststoffflaschen).

Hydrogenchlorid (HCI):

Darstellung durch Versetzen von Natriumchlorid mit Schwefelsäure.

Technisch wird HCI meistens als Abfallprodukt bei der Chlorierung von Kohlenwasserstoffen gewonnen.

Die Lösung in Wasser ist Salzsäure. Es ist eine starke nichtoxidierende Säure, die nur unedle aber keine edlen Metalle löst.

Sauerstoffsäuren der Halogene:

Hypochlorige Säure

entsteht durch Einleiten von Chlor in Wasser: Clo + HoO -- HOL + HOCL (in HOC) hat das Chlor

Salzsäure	
schlecht heilende	X
schädlichen	X
seltenste natürliche	X
Seveso-Gift	X
Streichholzköpfen	X
Trinkwasser	X
tödlich	X
Wasserstoffbrücken	X
Wunden	X
Zahnpasta	X
Ätzen von Glas	Х

die Oxidationszahl +I)

Die Salze dieser Säure heißen Hypochlorite. Wenn man Hypochlorit und Salzsäure zusammenbringt, reagieren diese zu Wasser und Chlor. Das Chlor entweicht. Dieses Problem tritt auf, wenn man gleichzeitig verschiedene Toilettenreiniger benutzt, da chlorhaltige Mittel Hypochlorit enthalten und andere wieder Salzsäure.

Hypochlorit dient zur Desinfektion von Wasser in Schwimmbädern, von Abwässern und von Fäkalien. Es wurde früher zum Bleichen von Textilien und Papier eingesetzt.

Halogensäuren

Bei den Halogensäuren (HXO₃) sind fast nur die Salze (Halogenate) interessant. Alle Halogensäuren sind starke Säuren. Sowohl die Säuren als auch die Halogenate sind starke Oxidationsmittel. Gemische von Chloraten mit leicht oxidierbaren Stoffen sind explosiv. Kaliumchlorat ist neben Schwefel oder Antimonsulfid und einem Bindemittel ein Bestandteil in Streichholzköpfen. Feste Chlorate zersetzen sich beim Erhitzen. Bei hohen Temperaturen, insbesondere bei Anwesenheit eines Katalysators wie MnO₂, spalten sie Sauerstoff ab.

Perchlorsäure (HClO₄) (Cl hat die Oxidationszahl +VII)

ist eine Flüssigkeit. Sie gehört zu den stärksten bekannten Säuren und ist ein starkes Oxidationsmittel. Allerdings reagiert sie und manche Salze (Perchlorate) schon auf Erschütterungen explosionsartig.

Halogenverbindungen mit anderen Elementen

Im Einklang mit der Elektronegativität nimmt der ionische Charakter in der Reihenfolge Fluorid > Chlorid > Bromid > Iodid ab. Die Aluminiumhalogenide bieten hierfür ein Beispiel.

Aluminiumfluorid ist aus Ionen aufgebaut. Im Aluminiumchlorid sind erhebliche kovalente
Bindungsanteile vorhanden. Aluminiumbromid und -iodid bestehen aus Molekülen (100% kovalent).

Verwendung

Fluor

Synthetischer Kryolith (Na₃AIF₆) wird für die elektrolytische Gewinnung von Aluminium benötigt. Fluorierte Kohlenwasserstoffe sind unter Normbedingungen sehr reaktionsträge und wurden deswegen häufig als Kühlmittel in Kühlgeräten und als Treibmittel in Spraydosen verwendet. Später erkannte man die schädlichen Auswirkungen dieser Gase auf die Ozonschicht der Erde. Fluoride werden der Zahnpasta und dem Trinkwasser zugefügt.

Chlor

Organische Chlorverbindungen: Kunststoffe, Pflanzenschutzmittel, Lösungsmittel, Medikamente, Farbstoffe oder Kühlmittel. Auch diese Verbindungen bringen Probleme in der Entsorgung mit sich. Bei der Verbrennung derartiger Produkte entsteht bei bestimmten Temperaturen das hochgiftige Dioxin (Seveso-Gift).

Brom

Ein Großteil des Broms wird zur Herstellung von Flammschutzmitteln benötigt. Für die Gewinnung von Schädlingsbekämpfungsmitteln und bestimmten Arzneimitteln wird das Element ebenfalls verwendet.

lod und seine Verbindungen spielen im Alltag eine wesentlich geringere Rolle als die übrigen Halogene. Zu den Anwendungen gehört die Herstellung pharmazeutischer Produkte, Farbstoffe und Silberiodid für fotografische Zwecke.

Astat

Dieses Element ist radioaktiv und wurde erst 1940 entdeckt. Es soll weltweit nur in einer Gesamtmenge von ca. 25 Gramm vorkommen. Damit ist es wahrscheinlich noch vor dem Element Francium, dessen Vorkommen in der Erdkruste auf etwa 30 Gramm geschätzt wird, das seltenste natürliche Element auf der Erde.

Autor: Nagel/Kappenberg Anmerkung: Klasse 9